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P-1049-001 Lisboa, Portugal

E-mail: peres@evunix.uevora.pt

Received 1 February 2001, in final form 27 March 2001

Abstract
We study the charge and spin currents transported by the elementary excitations
of the one-dimensional (1D) Hubbard model and derive the corresponding
current spectra. We present results both for finite-size systems and in the
thermodynamic limit. This includes finding the couplings of both the low-
energy and finite-energy (string) excitations to external charge and spin probes.
At zero magnetic field the general structure of the charge–spin separation
survives at all energy scales and the effective charges of both the low-energy and
finite-energy charge excitations are studied as functions of the on-site Coulomb
interactionU , electronic densityn, and applied magnetic fieldH . In some limits
the effective charge of the low-energy excitations equals that of the electrons,
whereas that of the finite-energy charge-string excitations of rapidity length γ

is found to be 2γ times the electronic charge. At U = ∞ the spin excitations
do not contribute to spin transport, whereas the low-energy charge excitations
feel an effective flux given by (φ↑N↑ − φ↓N↓)/(N↑ + N↓), where Nσ is the
number of electrons of spin σ and φσ is a spin-dependent flux. This reveals
that at zero magnetic field and U = ∞ there is no spin transport, while at finite
magnetic field the low-energy charge excitations also carry spin. In the U � t

limit the spin is carried both by holons and spinons. Finally, we find that the
charge- and spin-current spectra can be derived from a semi-classical approach.

1. Introduction

For more than twenty years the transport properties of strongly correlated electron systems have
been a subject of experimental and theoretical interest. Low-dimensional conductors and Mott
insulators show large deviations in their transport properties from the usual Fermi-liquid quasi-
particle description. It is now understood that electronic correlations play an important role in
these systems [1–8], even when these correlations are small [6]. Solvable one-dimensional (1D)
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many-electron models such as the Hubbard chain [9,10], the supersymmetric t–J model [11],
and the spinless fermion model [12] are often used as starting models for the study of the
electronic properties of quasi-one-dimensional conductors [13–15].

Although the Hubbard chain was diagonalized long ago [9, 10], the involved form of
the Bethe-ansatz (BA) wave function has prevented the full calculation of dynamic response
functions, these including the charge–charge and spin–spin response functions and their
associated conductivity spectra.

However, in the last ten years many theoretical aspects of the Hubbard-model transport
properties have been understood. Information on the low-energy behaviour of correlation
functions can be obtained by combining the BA with conformal-field theory [16]. Several
approaches using bosonization [17, 18], the pseudo-particle formalism [19], scaling methods
[20], and spin-wave theory [21] have been used to investigate the low-energy transport
properties of the model away from half-filling and at the metal–insulator transition [9].
Partial information on the optical conductivity of the Hubbard model at finite frequencies
has been obtained by numerical methods [22–24]. Recently, exact results on the optical
conductivity of the 1D Hubbard model have been obtained by the present authors [13] using
the same BA representation as we use in this article, as well as by other groups using different
methods [14, 15]. Also the transport properties of spin systems have attracted attention since
the spin stiffness is a good probe of the nature of the spectrum [25,26]. In mesoscopic physics,
spin-polarized transport has become an important field of research, and a theory for spin
transport in a Luttinger liquid was recently developed [27].

The study of charge transport at finite temperatures in integrable models, in particular in
the 1D Hubbard model, has also been an active field of research. A series of comparative
numerical and analytical studies have explored the differences in transport properties between
integrable and non-integrable 1D models, including the Hubbard model [28–37]. Most of
these studies have dealt with generalizations to finite temperature of Kohn’s zero-temperature
concepts and approach [38].

The pseudo-particle theory of reference [39] introduced new branches of pseudo-particles
and generalized for all energy scales previous low-energy studies [40]. The new pseudo-
particle branches are associated with heavy pseudo-particles. These are the quantum objects
needed for the description of gapped branches of energy eigenstates relatively to the ground
state. Recently, combination of that pseudo-particle theory with newly found symmetries has
allowed the evaluation of analytical low-energy expressions for correlation functions associated
with non-linear elementary-excitation bands [41]. Combining that non-linear theory with
symmetries associated with the set of conservation laws of the model [42], one can derive
expressions for finite-energy correlation functions, for example the absorption band edge of
the frequency-dependent optical conductivity σ(ω) [13].

In this paper we study the charge and spin currents transported by the pseudo-particles
which describe the elementary low- and finite-energy excitations of the 1D Hubbard model. We
derive expressions for the charge- and spin-current spectra of these pseudo-particles. Similarly
to the case for Fermi-liquid quasi-particles, as a result of correlations the pseudo-particle
group velocity and current spectra are different quantities. When defined at the pseudo-Fermi
momenta, the ratios of these charge and spin currents over the group velocity provide the
pseudo-particle effective charge and spin, respectively, whose physical meaning we discuss in
this paper.

The paper is organized as follows. In section 2 the BA equations with spin-dependent
Peierls factors are presented. In section 3 the charge and spin spectra of the elementary
excitations of finite but large systems are derived. We first motivate the general study by
looking at the problem at large values of U . The charge and spin currents for U = ∞ and
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U � t are computed. In section 4 we derive the general equations valid in the thermodynamic
limit for the charge and spin spectra and study the effective charge carried by the pseudo-
particles. In section 5 we derive the same results as in section 4 by using a semi-classical
approach. Finally, in section 6 we present the concluding remarks.

2. Bethe-ansatz equations

In this section we present the BA equation for a spin-dependent Peierls phase factor. The
Hamiltonian for the Hubbard model is given by

Ĥ = −t
∑
j,σ

(c
†
jσ cj+1σ + h.c.) + U

∑
j

n̂j,↑n̂j,↓ (1)

where c
†
jσ (cjσ ) creates (annihilates) an electron with spin projection σ (here and when used

as an operator index, σ = ↑,↓, and σ = ±1 otherwise), n̂j,σ = c
†
jσ cjσ is the number operator

at site j , and cL+1σ = c1σ . The charge (ρ) and spin (σz) current operators are given by

Ĵ ρ = −e it
∑
σ

Na∑
j=1

(c
†
jσ cj+1σ − c

†
j+1σ cjσ ) (2)

and

Ĵ σz = −1

2
it

∑
σ

Na∑
j=1

σ(c
†
jσ cj+1σ − c

†
j+1σ cjσ ) (3)

respectively. Since neither Ĵ ρ nor Ĵ σz commutes with the Hamiltonian, the real part of
the corresponding conductivities has in addition to a zero-frequency coherent peak a finite-
frequency incoherent structure [13].

In the presence of a time-dependent vector potential A(t) the amplitude t for hopping
between sites i and i + 1 changes according to the well known Peierls substitution as follows:

ti+1,i → ti+1,i (A(t))

ti+1,i (A(t)) = ti+1,i exp[−ie(ri+1 − ri)A/h̄c]
(4)

where ri is the position of the site i on the lattice. It has been possible to solve the Hamiltonian
(1) with the additional hopping phase exp([−ie(ri+1 − ri)A/h̄c]). For convenience we write
A = h̄cφ/(aeL), where the lattice spacing a is given by a = ri+1 − ri . More generally, a spin-
dependent vector potential Aσ can be introduced and the model (1) can be solved by means
of the coordinate BA either with twisted or toroidal boundary conditions, the two approaches
giving essentially the same results [24,25,43]. One obtains the energy spectrum of the model
parametrized by a set of rapidity numbers {kj ,�δ} which are solutions of the BA interaction
equations given by

eikjL = eiφ↑
N↓∏
δ=1

sin kj − �δ + iU/4

sin kj − �δ − iU/4
(j = 1, . . . , N) (5)

and

e−i(φ↓−φ↑)
N∏

j=1

sin kj − �δ + iU/4

sin kj − �δ − iU/4
= −

N↓∏
β=1

�β − �δ + iU/2

�β − �δ − iU/2
(δ = 1, . . . , N↓). (6)

The above equations have both real and complex solutions for the rapidities kj and �β .
Some of the previous studies of the φσ �= 0 problem [25,43] have only considered the real BA
rapidities solutions of equations (5) and (6) which refer to the low-energy excitation spectra.
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Using the string hypothesis, valid for a finite system of large size L, equations (5) and (6) lead
to the following set of coupled algebraic equations [24, 44]:

kjL = 2πIc
j + φ↑ −

∑
γ

Ns,γ∑
j ′=1

2 tan−1

(
sin kj/u − Rs,γ,j ′

γ + 1

)

−
∑
γ>0

Nc,γ∑
j ′=1

2 tan−1

(
sin kj/u − Rc,γ,j ′

γ

)
(7)

L sin−1(u√
γ 2 + (Rc,γ,j + 1/u)2 − u

√
γ 2 + (Rc,γ,j − 1/u)2

)
= 2πI

c,γ

j − γ (φ↑ + φ↓) −
Nc∑

j ′=1

2 tan−1

(
sin kj ′/u − Rc,γ,j

γ

)

+
∑
γ ′>0

Nc,γ ′∑
j ′=1

$γ,γ ′(Rc,γ,j − Rc,γ ′,j ′) (8)

and
Nc∑

j ′=1

2 tan−1

(
Rs,γ,j − sin kj ′/u

1 + γ

)

= 2πI
s,γ

j + (γ + 1)(φ↓ − φ↑) +
∑
γ ′

Ns,γ ′∑
j ′=1

$γ +1,γ ′+1(Rs,γ,j − Rs,γ ′,j ′). (9)

In the above equations we have introduced u = U/(4t). The functions $γ,γ ′(x) (and
$γ +1,γ ′+1(x)) of equations (7), (8), and (9) are defined in reference [39]. The following
definitions for the real parts of the rapidities �n+1

α /u = Rs,γ,j (with n + 1 = γ and α = j )
and �′n

α /u = Rc,γ,j (with n = γ and α = j ), where γ = 1, 2, . . . for the c, γ sums and
γ = 0, 1, 2, . . . for the s, γ sums, allow us to recover Takahashi’s formulae for φσ = 0 [10].
Here and often below we use the notation c ≡ c, 0, which indicates that the c, γ sums run
over 1, 2, . . ..

The relevant numbers I c
j , I

c,γ

j , and I
s,γ

j which appear in going from equations (5) and
(6) to equations (7), (8), and (9) are the quantum numbers whose occupancies describe the
energy eigenstates. In table 1 we give a classification of the type of excitations described by the
associated quantum numbers, as well as the various nomenclatures existing in the literature.
The I c

j quantum numbers are associated with the low-energy charge excitations and play an

Table 1. Types of excitation associated with the quantum numbers (Q.N.) I c
j and I

α,γ

j , with
α = c, s. The spin-string excitations are gapped only for finite magnetic field H . At low energy,
both the holon and spinon excitations can be described by bosonization methods. The smallest gap
of the charge-string excitations occurs at half-filling and is the Mott–Hubbard gap 'MH . In the
table, P.P. stands for pseudo-particle.

Q.N. Type of excitation Gap Rapidity P.P.

I c
j Holons Gapless kj c, 0

I
s,0
j Spinons Gapless Rs,0,j s, 0

I
c,γ>0
j Charge strings Gapped Rc,γ,j c, γ � 1

I
s,γ>0
j Spin strings Gapped (H �= 0) Rs,γ,j s, γ � 1
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important role in the metallic phase. At half-filling the system is a Mott insulator, and all
the I c

j quantum numbers are occupied in the ground state. In this case, charge excitations
involve occupancy of the I

c,γ

j quantum numbers. The energy eigenstates with occupied I
c,γ

j

numbers have a gap relatively to the ground state. The minimal energy required for a single
occupancy of the I

c,1
j quantum numbers equals, at half-filling, the Mott–Hubbard gap [13].

The I
s,γ

j quantum numbers are associated with spin excitations of the system. In the ground

state, at zero magnetic field, all I s,0
j quantum numbers are occupied. Excitations which change

the s, 0 occupancies and keep the s, γ > 0 occupancies zero are spin-triplet or higher-order
multiplet excitations. On the other hand, singlet excitations involve changes of both the s, 0
and s, γ > 0 occupancies.

The numbers I c
j and I

α,γ

j are integers or half odd integers [10] when the numbers N̄c and

N̄α,γ are even or odd, respectively, where

N̄c =
∑
γ=0

Ns,γ +
∑
γ=1

Nc,γ

N̄c,γ = 1 + L − N + Nc,γ N̄s,γ = 1 + N − Ns,γ

(10)

and Nα,γ stands for the number of occupied I
α,γ

j quantum numbers, with N the total number of
electrons. The spacing between adjacent quantum numbers I

α,γ

j is always one, independently
of the value of the on-site repulsion U . It is therefore natural to interpret qα,γ

j = 2πI
α,γ

j /L as
a momentum [39], the rapidities Rα,γ,j and kj being functions of qα,γ

j and qc
j , respectively. We

call the occupied values of the I c
j and I

α,γ

j numbers c and α, γ pseudo-particles, respectively.
On the other hand, the holons and spinons referred to in table 1 correspond in the present
representation to the non-occupied I c

j and I
s,0
j numbers, respectively. The connection of

pseudo-particles with the SO(4) symmetry [45] of the Hubbard model was discussed by two
of the present authors in a previous work [46].

The total number of electrons and the total number of down-spin electrons, N↓, obey the
following sum rules:

N = Nc + 2Ac (11)

and

N↓ = Ac + As (12)

respectively, where

Ac =
∑
γ>0

γNc,γ As =
∑
γ=0

(γ + 1)Ns,γ . (13)

The numbers I c
j , I c,γ

j , and I
s,γ

j belong to the intervals

|I c
j | < L

2

|I c,γ

j | < 1

2
(L − N + 2Ac − T γ

c )

|I s,γ

j | < 1

2
(N − 2Ac − T γ

s )

(14)

where T
γ
α (with α = c, s) is given by

T γ
c =

∑
γ ′=1

t cγ,γ ′Nc,γ ′ T γ
s =

∑
γ ′=0

t sγ,γ ′Ns,γ ′ (15)

with t cγ,γ ′ = 2 min(γ, γ ′) − δγ,γ ′ and t sγ,γ ′ = 2 min(γ + 1, γ ′ + 1) − δγ,γ ′ .
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All energy eigenstates considered in the BA solution are described by different occupancies
of the quantum numbers I

α,γ

j . For example, the ground state [39] is described by a compact

symmetric occupancy around the origin of the numbers I c
j and I

s,0
j , and by zero occupancy

for the numbers I
c,γ

j and I
s,γ>0
j . The general classification of the excitations is summarized

in table 2.

Table 2. The numbers Nα,γ of the different excitations. The notation is as follows: G.S., Ex0,
Exc,γ , and Exs,γ stand for ground states, low-energy eigenstates (no-strings), eigenstates with c, γ

charge strings of length γ , and eigenstates with s, γ spin strings of length γ , respectively.

State Nc Ns,0 Nc,γ>0 Ns,γ>0

G.S. N N↓ 0 0

Ex0 N N↓ 0 0

Exc,γ N − ∑
γ>0 2γNc,γ N↓ − ∑

γ>0 γNc,γ Nc,γ 0

Exs,γ N N↓ − ∑
(γ + 1)Ns,γ 0 Ns,γ

The energy and momentum eigenvalues are given by [10, 39]

E(L, φ,U,Nσ ) = −2t
Nc∑
j=1

cos kj + 4t
∑
γ=1

Nc,γ∑
j=1

Re
√

1 − u2[Rc,γ,j − iγ ]2 (16)

and

P =
Nc∑
j=1

2π

L
Ic
j +

∑
γ

Ns,γ∑
j=1

2π

L
I
s,γ

j −
∑
γ

Nc,γ>0∑
j=1

2π

L
I
c,γ

j +
N↑
L

φ↑ +
N↓
L

φ↓ + π
∑
γ>0

Nc,γ (17)

respectively.
We stress that equations (7)–(9) are only valid in the limit of very large system size L,

where Takahashi’s string hypothesis becomes valid [10,47]. The general solution of equations
(7)–(9) for large system size L, arbitrary electron numbers Nσ , and Coulomb interaction U is a
very difficult problem. Below we solve the problem explicitly for the charge and spin currents
of a large system of size L in the limits U = ∞ and U � t .

3. Currents transported by the elementary excitations

To gain some insight into the problem, we start by studying the charge and spin currents
transported by the pseudo-particle excitations listed in table 1, in the limits U = ∞ and U � t .
The charge- and spin-current operators Ĵ ρ and Ĵ σz associated with the 1D Hubbard model are
given in equations (2) and (3), respectively. The current expectation values J

ρ
m ≡ 〈m|Ĵ ρ |m〉

and J
σz
m ≡ 〈m|Ĵ σz |m〉 relative to the energy eigenstate |m〉 are given by [25]

J ρ
m = dEm

d(φ/L)
φ = φ↑ = φ↓ (18)

and

J σz

m = dEm

d(φ/L)
φ = φ↑ = −φ↓ (19)

respectively, with Em = Em(φ) the corresponding energy eigenvalue. Below we write the
currents J

ρ
m and J

σz
m in units of the electron charge (−e) and spin (1/2), respectively.
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3.1. The U = ∞ case

Let us consider first energy eigenstates with c and s, 0 occupancies only. In this case the
number of electrons is related to Nc and As as follows:

N↑ = Nc − As N↓ = As Nc = N↑ + N↓. (20)

At U = ∞ the charge-string excitations have infinite energy relatively to the ground state
and, therefore, drop out of the problem. In physical terms this means that states with finite
double occupancy are not permitted. The rapidities Rs,γ,j decouple from the charge degrees of
freedom and all the spin excitations are degenerate [48–50], because the s, γ pseudo-particles
have in this limit a flat dispersion relation. Equations (7)–(9) then reduce to

k∞
j L = 2πIc

j + φ↑ +
Ns,0∑
j ′=1

2 tan−1(R∞
s,0,j ′) (21)

and

Nc 2 tan−1(R∞
s,0,j ) = 2πI

s,0
j + (φ↓ − φ↑) +

Ns,0∑
j ′=1

$1,1(R
∞
s,0,j − R∞

s,0,j ′) (22)

with $1,1(x) = 2 tan−1(x/2). We see from the structure of equations (21) and (22) that the
Hubbard-model Hilbert space decouples, in this case, into a product of two Hilbert subspaces,
each of them associated with a different effective Hamiltonian. These are a chain of length
L and Nc spinless fermions and a Heisenberg spin-one-half chain of length Nc, as was first
discussed by Ogata and Shiba [50]. This is, however, a very delicate decoupling as regards
the finite-temperature properties. In fact, if U is very large but not infinity, in a given finite-
temperature calculation Nc is not constant, implying that the length of the Heisenberg chain
also varies.

The energy eigenvalues are given by

Em(L, φ,Nσ ) = E∞
m = −2t

Nc=N∑
j=1

cos k∞
j . (23)

Equations similar to equations (21)–(23) have been derived for the ground state in the study of
persistent currents in finite-size rings [51]. If we use equation (22) in equation (21) we obtain
a solution for k∞

j in terms of the quantum numbers I c
j and I

s,0
j only. This solution reads

k∞
j = 2π

L
Ic
j +

φ↑(Nc − As) + φ↓As

LNc

+
2π

LNc

Ns,0∑
j=1

I
s,0
j . (24)

Equation (24) shows that in the present case of U = ∞ the spin degrees of freedom are still
coupled to the charge excitations through the quantum numbers I

s,0
j . These act as a fictitious

flux piercing the ring of spinless fermions. Furthermore, the flux dependence of kj can be
defined in terms of an effective flux 0eff given by

0eff = φ↑N↑ + φ↓N↓
LNc

. (25)

The value of 0eff depends on whether we are computing the charge or the spin currents. We
therefore have a flux 0

ρ

eff for charge and a flux 0
σz

eff for spin given by

0
ρ

eff = φ

L
0

σz

eff = φ

L

N↑ − N↓
N↑ + N↓

(26)
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respectively. These equations together with equations (18) and (19) give

J ρ
m = +2t

Nc∑
j=1

sin kj (27)

and

J σz

m = 2t
N↑ − N↓
N↑ + N↓

Nc∑
j=1

sin kj . (28)

Equation (27) shows that the charge c pseudo-particle current is that of spinless fermions, in
agreement with the well known factorization of the Hubbard model in spinless fermions and
an antiferromagnetic Heisenberg chain [50]. The charge-current spectrum of the c pseudo-
particles is 2t sin kj and equals, in this case, the corresponding group velocity. This implies
that the effective charge transported by the c pseudo-particle is 1, equalling the electronic
charge. The fact that kj depends on the statistical flux term φstat

s :

φstat
s = 2π

LNc

Ns,0∑
j=1

I
s,0
j (29)

shows that the charge transport is affected by the background configuration of the spins. The
effect of φstat

s on the finite-size finite-temperature charge stiffness was studied in reference [37].
Equation (28) is also interesting, since it reveals that we can only have spin currents in the
system provided that a magnetic field is applied, which introduces an asymmetry between the
N↑ and N↓ electron populations. If the system is half-filled the sum

∑Nc

j=1 sin kj is zero in the
thermodynamic limit for the ground state and transport is blocked for both charge and spin.
Since for U = ∞ the energy does not depend on the rapidities Rs,γ,j , we have in this limit
that the s, 0 and s, γ � 1 pseudo-particles do not transport either charge or spin, whereas
the c pseudo-particles can transport both charge and spin if we apply a magnetic field to the
system. This means that the charge–spin separation considered in bosonization refers only to
zero magnetic field.

3.2. The U � t case

If U is finite but t2/U corrections are neglected, the energy eigenvalues are given by

Em = −2t
Nc∑
j=1

cos kj + U
∑
γ>0

γNc,γ . (30)

Proceeding as before we obtain that the c pseudo-particles feel an effective charge flux

0
ρ

eff = φ

L

Nh − Nd

Nh + Nd

(31)

where Nh is the number of empty lattice sites and Nd is the number of doubly occupied
sites. If we are in the metallic phase the energy eigenstates described by finite occupancy
of c, γ pseudo-particles have no important role for charge transport. On the other hand, in
the insulating phase, only the above energy eigenstates are relevant for zero-frequency charge
transport at finite temperature. That is, the finite-temperature charge-transport properties of
the Mott–Hubbard insulating phase are controlled by the charge-string excitations. In this
case, however, 0

ρ

eff = 0, and both charge and spin transport are blocked. This implies that
at large U and at half-filling, charge and spin zero-frequency transport is controlled by t2/U

corrections to the energy.
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Let us now compute the charge and spin currents up to order t2/U . We first consider the
case of energy eigenstates with c and s, 0 occupancy only. We start by writing kj = k∞

j + δkj

and Rs,0,j = R∞
s,0,j +δRs,0,j , where δkj and δRs,0,j represent the t/U correction to the rapidities

kj and Rs,0,j , respectively. Introducing kj and Rs,0,j , written as before, in equations (7)–(9)
and expanding the resulting equations up to first order in t/U we obtain

δkj = −8tBs
m

LU
sin k∞

j +
8t

LUNc

Bs
mAc

m (32)

where

Bs
m =

N↓∑
j=1

1

1 + (R∞
s,0,j )

2
Ac

m =
Nc∑
j=1

sin k∞
j . (33)

We can identify −Bs
m with the energy of Heisenberg-chain eigenstates with no s, γ > 1

occupancy. For zero magnetic field there is only one such state and therefore −Bs
m corresponds

to the ground-state energy of a Heisenberg chain of size Nc. The energy of the Hubbard chain
is in this limit given by

E(L, φ,Nσ ,U) = E∞
m + 2t

Nc∑
j=1

δkj sin kj (34)

and the charge and spin currents can be computed using equations (18) and (19), as before.
Note that the flux dependence of R∞

s,0,j must now be taken into account for the calculation
of the spin current. The charge current J

ρ
m is basically given by equation (27) with a small

correction of the order of t2/U , coming from the second term in equation (34). The main
difference refers to the spin current which has in general a finite value. However, for zero
magnetic field, J σz

m is given by

J σz

m = 2t
Nc∑
j=1

sin k∞
j

d δkj

d(φ/L)
∝ dBs

m

d(φ/L)
= 0. (35)

For the zero-magnetization ground state, j = 1, . . . , Ns,0 for the s, 0 band and, therefore, the
number of available I

s,0
j quantum numbers equals the Ns,0 occupancies, leading to zero value

for the derivative of Bs
m with respect to the flux, as can be seen from figure 1, and therefore

J
σz
m is zero.

Let us now consider that a spin-singlet excitation is created and find the corresponding spin
current. For simplicity we consider the ground-state distribution of the I c

j quantum numbers.
We also consider the case of zero magnetic field, since in this case the spin is transported by the
s, γ pseudo-particles only. This corresponds to the following variations of the pseudo-particle
numbers:

'Ns,0 = −2 'Ns,1 = 1. (36)

Let us consider the case for which N is even and N↑ = N↓ are odd. In this case the I c
j quantum

numbers are half-odd integers and I
s,0
j quantum numbers are integers in the ground state:

I c
j = −L − 1

2
,−L − 3

2
, . . . ,−1

2
,

1

2
, . . . ,

L − 3

2
,
L − 1

2

I
s,0
j = −N↑ − 1

2
,−N↑ − 3

2
, . . . , 0, . . . ,

N↑ − 3

2
,
N↑ − 1

2
.
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Figure 1. The Bs
m − 0.5L ln 2 term as a function of the flux φ/(2π), for L = 40 = 2N↓. It is clear

that dBs
m/dφ is zero at φ = 0. Therefore the corresponding current expectation value J

σz
m is zero.

When an s, 1 pseudo-particle is created, the I
s,0
j numbers remain unchanged but the I c

j quantum
numbers change to integers. This collective excitation of the c pseudo-particles contributes to
the excitation momentum, which is given by

q =
Nc∑
j=1

2π

L
Ic
j +

N↓−2∑
j=1

2π

L
I
s,0
j = π

Nc

L
+

N↓−2∑
j=1

2π

L
I
s,0
j (37)

and I
s,1
j only has the occupied j = 0 value I

s,1
0 = 0. Note that at half-filling the contribution

of the c, 0 pseudo-particles to q equals π . For the class of energy eigenstates that we are
considering, the BA equations (7) and (9) are written as

kjL = 2πIc
j + φ↑ −

Ns,0∑
j ′=1

2 tan−1(sin kj/u − Rs,0,j ′) − 2 tan−1

(
sin kj/u − Rs,1

2

)
(38)

Nc∑
j ′=1

2 tan−1

(
Rs,1 − sin kj ′/u

2

)
= 2πI s,1 + 2(φ↓ − φ↑) +

Ns,0∑
j ′=1

$2,1(Rs,1 − Rs,0,j ′) (39)

Nc∑
j ′=1

2 tan−1(Rs,0,j − sin kj ′/u)

= 2πI
s,0
j + (φ↓ − φ↑) +

Ns,0∑
j ′=1

$1,1(Rs,0,j − Rs,0,j ′) + $1,2(Rs,0,j − Rs,1) (40)
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with

$1,2(x) = $2,1(x) = 2 tan−1(x) + 2 tan−1(x/3). (41)

Proceeding as before, we can compute δkj for a spin-singlet excitation (sse), obtaining

δksse
j = δkj − 8t

LU

2 sin k∞
j

4 + (R∞
s,1)

2
+

8t

LUNc

2Ac
m

4 + (R∞
s,1)

2
(42)

where δkj is given by equation (32), but Ns,0 has diminished by two. The spin current is given
by

J σz

m = 8t2

U

(
Nc

L
− cos(2φstat

s )
sin(2πNc/L)

L sin(2π/L)

)
dBsse

d(φ/L)
(43)

where Bsse reads

Bsse = − 2

4 + (R∞
s,1)

2
−

N↓−2∑
j=1

1

1 + (R∞
s,0,j )

2
(44)

and is a function of the excitation momentum q given by equation (37), which in this case
reads

q = 2π

L
I
s,0
1 +

2π

L
I
s,0
2 + π

Nc

L
.

In the limit L → ∞, Nc → ∞ and nc = Nc/L finite, the spin current is given by

J σz

m = 8t2

U

(
nc − sin(2πnc)

2π

)
dBsse

d(φ/L)
. (45)

The fact that dBs
m/d(φ/L) is zero for states with no s, 1 occupancy implies that the spin current

is transported by the two holes created in the s, 0 band; that is, the spin current is transported
by the two spinons.

These have an excitation spectrum determined by

E(q) = 8t2

U

(
nc − sin(2πnc)

2π

)
(Bsse + Bs

m)

where q is the excitation momentum given in equation (37). The number of two-spinon spin-
singlet excitations with the same c pseudo-particle occupancy is N↓(N↓ −1)/2. The excitation
energy E(q) of these eigenstates is represented in figure 2. It is clear that E is a two-parameter
excitation spectrum, which is controlled by the two-spinon momenta 2πI

s,0
1,2/L.

The group velocity v(q) and the spin-current spectrum J σz(q) are given by

v(q) = dE(q)

dq
J σz(q) = dE(q)

d(φ/L)
(46)

respectively, and are represented in figure 3 for the case nc = 1. In this figure only the group
velocity and the spin-current spectrum associated with the envelope curves of E(q) are shown.

From figure 3 it is clear, as for a Fermi liquid, that v(q) and J σz(q) are not in general
the same function, in contrast to the case for spin transport by independent electrons. In
figure 3 the solid line corresponds to states in which the two spinons travel together, whereas
the dashed lines represent the states in which one spinon is fixed at the (pseudo-) Fermi points
I
s,0
j = ±(N↑ − 1)/2. Also from figure 3 and for the solid and dashed lines (the envelope

curves of all these two-parameter excitations) we see that the spin current is zero when the two
spinons occupy the I

s,0
j = ±1/2 and the I

s,0
j = ±(N↑ − 1)/2 quantum numbers. Obviously

when the two spinons occupy two symmetric I
s,0
j numbers the spin current is zero. Note that,

when the two spinons travel together, v(q) and J σz(q) are given by the same function, apart
from a numerical constant. Otherwise, v(q) and J σz(q) do not coincide. These results show
the importance of correlations in charge and spin transport.
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Figure 2. The spectrum of a spin-singlet excitation associated with two spinons at half-filling for
U � t up to order t2/U , obtained by numerical solution of the BA equations. We consider the case
n = 1 and N↑ = N↓ here. The circles represent the excitation energies of a system with L = 46
and N↑ = N↓ = 23. The solid and dashed lines represent the thermodynamic limit solutions
E(q)/(2t/u) = (π/2)|sin(q/2)| and E(q)/(2t/u) = (π/4)|sin q|, respectively.

4. Charge-current spectrum

The discussion on charge and spin transport for large U of the previous section can be
generalized to all finite values of the on-site repulsion U . As follows from the analysis of
that section, the discussion of spin transport becomes more transparent if we describe the
low-energy excitations in terms of spinons rather than s, 0 pseudo-particles. In this section we
restrict consideration to the pseudo-particle charge transport and we will discuss the general
formulation of spin transport in terms of spinons elsewhere [53].

Our goal is to compute the charge-current spectrum J ρ
α,γ (q) of the 1D-Hubbard-modelα, γ

pseudo-particles for all values of U and electronic densities n, in the thermodynamic limit.
In a previous work we considered the finite-frequency charge conductivity of the Hubbard
model [13]. Here we study the current expectation value in any energy eigenstate, extending
the work presented in references [19, 37, 54] for states with c, γ > 0 occupancies. In this
section we find, as in the case of the quasi-particles of a Fermi liquid, that the spectrum J ρ

αγ (q)
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Figure 3. The group velocity and spin-current spectrum of a spin-singlet excitation involving the
creation of a s, 1 pseudo-particle at half-filling and for U � t . Both v(q) and J (q) are presented
in units of 2t/u. The solid and dashed lines are associated with the corresponding envelope curves
in figure 2, represented using the same symbols.

does not equal to the group velocity defined as

vα,γ (q) = dεα,γ (q)

dq
(47)

where εα,γ (q) is the dispersion of the α, γ pseudo-particles.
For states generated from the ground state by small changes of the I

α,γ

j occupancies, the
energy eigenvalues (16) can be written as

Em = E0 +
∑
α,γ,j

δNα,γ (q
α,γ

j )εα,γ (q
α,γ

j ) + h.o. (48)

where δNα,γ (q
α,γ

j ) represents the occupancy deviations in the momenta q
α,γ

j relatively to the
ground state and h.o. stands for higher-order terms [39]. The next-higher-order term represents
the two-pseudo-particle interaction. For many physical properties and quantities, such as
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the thermodynamics and the charge and spin currents, only the terms of order zero and one
are relevant, whereas in some cases the third- and higher-order terms also play an important
role [41]. The dispersions εα,γ (q) can be experimentally probed by scattering experiments [5,7]
and are defined in the appendix.

The computation of the charge current (18) involves the expansion of equations (7)–(9)
and (16) up to first order in the flux φ. This gives

J ρ = −2t
∑
j

Nc(q
c,0
j )kφ(q

c,0
j ) sin[k(qc,0

j )]

+
∑
γ>0

4t
∑
j

Nc,γ (q
c,γ

j ) Re
u2[Rc,γ (q

c,γ

j ) − iγ ]√
1 − u2[Rc,γ (q

c,γ

j ) − iγ ]2
Rφ

c,γ (q
c,γ

j ) (49)

where Nc,γ (q
c,γ

j ) is the distribution of occupied quantum numbers I
c,γ

j in a given energy eigen-
state. The functions Wφ(q) (with W = k, Rs,γ , and Rc,γ ) are the derivatives of the rapidities
defined by equations (7)–(9) with respect to the flux φ at φ = 0. These obey a new set of
equations that can be easily obtained from equations (7)–(9).

To obtain the charge current α, γ pseudo-particle spectrum we write equation (49) in the
form

J ρ
m = J

ρ

0 +
∑
α,γ,j

δNα,γ (q
α,γ

j )J ρ
α,γ (q

α,γ

j ) (50)

where J
ρ

0 is the ground-state current, which we can choose to be zero. Moreover, we expand
all of the rapidities W(q) and the functions Wφ(q) in terms of δNα,γ (q

α,γ

j ). Using the same
procedure as reference [39], we obtain [55]

J ρ
α,γ (q) =

∑
α′

∑
γ ′

θ(Nα′,γ ′)Cρ

α′,γ ′
[
vα,γ (q)δα,α′δγ,γ ′ + F 1

α,γ ;α′,γ ′(q)
]
. (51)

Here the function θ(Nα′,γ ′) restricts the sums to the occupied branches of I
α,γ

j numbers
characterizing a given energy eigenstate and

F 1
α,γ ;α′,γ ′(q) = 1

2π

∑
j=±1

jfα,γ ;α′,γ ′(q, jqFα′,γ ′). (52)

The f -function fα,γ ;α′,γ ′(q, q ′) is defined in the appendix and Cρ
α,γ are the coupling constants

for the coupling of pseudo-particles to charge given in table 3.

Table 3. Charge couplings Cρ
α,γ of the α, γ pseudo-particles to external probes.

Type of excitation Cρ
α,γ

c, 0 1
c, γ � 1 2γ
s, γ 0

As in a Fermi liquid [56,57], the expressions for the elementary currents (51) involve the
group velocities vα,γ (q) and the interactions (or f -functions) fα,γ ;α′,γ ′(q, q ′). However, in
contrast to the case for the Fermi-liquid quasi-particles, the pseudo-particle charge-coupling
constants listed in table 3 are different from the corresponding electronic couplings.

The coupling constants of table 3 play an important role in the description of charge
transport in the many-body system and are a generalization for γ > 0 occupancy of the
couplings introduced in reference [19]. In the case of a Hilbert subspace spanned by states
with c and s, 0 occupancy only, equation (51) leads to the expressions already obtained in
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reference [19]. When Cρ
α,γ = 0 the corresponding α, γ pseudo-particle does not couple to

charge. Note that the s, γ pseudo-particles do not directly couple to charge, in agreement with
our U � t analysis. Here we found that this result holds for arbitrary finite values of U .

In a Fermi liquid the effective charge transported by the quasi-particles is defined as the
ratio of the charge-current spectrum over the group velocity, taken at the Fermi momentum
[56, 57]. In the Hubbard model the quantum numbers I c

j and I
s,0
j are compactly distributed

around the origin for the ground state. It is therefore sensible to define (pseudo-) Fermi
points as q

α,γ

F = 2πI
α,γ

F /L, where I
α,γ

F is the largest quantum number occupied in the ground
state. As in a Fermi liquid, the low-temperature transport properties are controlled by the
excitations close to the (pseudo-) Fermi points. The ratio of the charge-current spectrum over
the group velocity provides a measure of the effective charge carried by the pseudo-particles.
The effective charges ec and ec,γ are defined as [19]

ec = −e
J

ρ
c (qc

F )

vc(q
c
F )

ec,γ = −e
J

ρ
c,γ (q

c,γ

F )

vc,γ (q
c,γ

F )
(53)

respectively (−e is the electronic charge).
Analytical expressions for eα,γ can be derived in some limits and are given in table 4.

In general we have that ec,0 tends to −e for n → 0 and n → 1, and for H → Hc for all
values of U , as can be seen in figures 4 and 5. Here Hc is the critical magnetic field for
fully polarized ferromagnetism. For intermediate densities the effective charge of the c, 0
pseudo-particle excitation is larger than the electron charge. The n = 0 and n = 1 limiting
value of ec,0 is simple to understand. For very low densities there is barely any interaction
among the electrons and therefore the charge of the elementary excitations tends to that of
the electrons. For n close to 1 the chain is almost half-filled and there are very few holes in
the system—which are responsible for the charge transport. As in the low-density case, these
holes do not interact very much and the effective charge of the excitations is again that of the
electrons. At other fillings the effective charge is larger than the electronic charge. This may
be due to a cooperative effect (in bosonization the c pseudo-particle–pseudo-hole excitations
are represented by a charge-density wave). The effective charge ec,0 → 1 as U → ∞, as can
be seen from figure 5. This is because in this limit the c, 0 pseudo-particles transform into
spinless fermions.

Table 4. The effective charge carried by the pseudo-particles. The function ηγ is defined as
ηγ = 2/(π) tan−1[(sin(nπ))/(u[γ + 1])]. The parameter ξ1

α,γ ;α′,0 is defined in the appendix and
the parameter ξ0 is defined in reference [16].

H → Hc H → 0 n → 1

ec,γ�1 −e(2γ − ηγ−1) −e(2γ + ξ1
c,γ ;c,0) −e 2γ

ec,0 −e −e(ξ0)
2 −e

At n = 1 the minimal energy gap between the ground state and an energy eigenstate
with one c, 1 pseudo-particle is the Mott–Hubbard gap 'MH , such that for U � t we have
'MH = U − 4t . The average number of doubly occupied sites is given by

D =
〈∑

j

n̂j,↑n̂j,↓

〉

which for U � t reads D = ∑
γ>0 γNc,γ [37]. This means that for U � t one c, 1 pseudo-

particle can be identified with the creation of a single doubly occupied site in the system. We
expect, therefore, that ec,1 = −2e in this limit. This is, in fact, confirmed by figure 6. As
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Figure 4. The effective charge ec,0 (in units of −e) as a function of the electronic density n and
for values of the magnetic field h = H/Hc = 0.1, h = 0.3, h = 0.5, h = 0.7, and h = 0.9. The
on-site repulsion is U = 5 in units of t .

U decreases the creation of c, γ pseudo-particles is not directly associated with the creation
of doubly occupied sites and therefore we expect the modulus of the effective charge to be
smaller than |−2e|, as is confirmed by figure 6. For n → 1 and n → 0 the large-U physics
extends to all finite U -values and c, 1 pseudo-particles carry charge −2e in these limits, as can
be seen from figure 7 and as discussed above.

5. Semi-classical approach

The results of section 4 were obtained directly from the solution of the BA equations. We now
show that the same results can be derived from a semi-classical approach.

The pseudo-particle interactions are described by the f -functions and due to the
integrability of the model are of pure zero-momentum forward-scattering character. This means
that the pseudo-particle collisions do not lead to momentum and energy transfer, the only result
of these events being shifts in the pseudo-particle phases. As in the case of reference [19] which
referred to c and s, 0 occupancy only, let us consider a semi-classical approach and assume that
we perturb the system in such a way that the pseudo-particle distribution functions Nα,γ (q)
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Figure 5. The effective charge (in units of −e) ec,0 as a function of U (in units of t) at electronic
density n = 0.7 and for values of the magnetic field h = H/Hc = 0.1, h = 0.3, h = 0.5, h = 0.7,
and h = 0.9. For other electronic densities the plots follow the same trends as for n = 0.7.

become spatially inhomogeneous and time dependent; that is,

Nα,γ (q, x, t) = N0
α,γ (q) + δNα,γ (q, x, t) (54)

where N0
α,γ (q) is the initial homogeneous distribution. For example, in the ground state

N0
c = θ(qc

F − |q|) N0
s,0 = θ(q

s,0
F − |q|) N0

α,γ>1 = 0 (55)

where θ(x) is the step function. In a previous study, reference [39], we have computed the
energy spectra of the pseudo-particle excitations. Both as in a Fermi liquid and in the case
of reference [19], if the distribution functions are now spatially inhomogeneous and time
dependent, the renormalized energy band of the α, γ pseudo-particle is given by

ε̌α,γ (q, x, t) = εα,γ (q) +
1

2π

∑
α′,γ ′

∫ qα′ ,γ ′

−qα′ ,γ ′
dq ′ δNα′,γ ′(q ′, x, t)fα,γ ;α′,γ ′(q, q ′) (56)

where qα,γ = 2πIα,γ /L is the limit of the pseudo-Brillouin zone and Iα,γ is the highest
possible value of the available I

α,γ

j quantum numbers. Let us introduce the total charge
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Figure 6. The effective charge ec,1 (in units of −e) as a function of U (in units of t) at electronic
density n = 0.7 and for values of the magnetic field h = H/Hc = 0.1 (full line), h = 0.5 (dotted
line), and h = 0.9 (dashed line). For other electronic densities, the plots follow the same trends as
for n = 0.7.

−eN = −e(Nc + 2Ac) = Aρ . In the case where we are considering the spatial inhomogeneity
of the system, this implies that the mean total charge at point x and time t are given by

〈Aρ(x, t)〉 = 〈Aρ〉0 − e
L

2π

∫ qc,0

−qc,0
dq δNc,0(q, x, t) − e

∑
γ

2γ
L

2π

∫ qc,γ

−qc,γ

dq δNc,γ (q, x, t).

(57)

The physical origin of the coupling constants listed in table 3 is clear from equation (57).
Within the semi-classical approach, the response to a scalar field, V ρ(x, t), is proportional

to the conserved quantity Aρ . As for the case with only c and s, 0 occupancy [19], in the
presence of the inhomogeneous potential the force Fρ(x, t)α,γ that acts upon the α, γ pseudo-
particle is given by

Fρ
α,γ (x, t) = −[∂V ρ(x, t)/∂x]Cρ

α,γ × (−e).

The deviations δNα,γ (q, x, t) are determined from the solution of the system of kinetic
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Figure 7. The effective charge ec,1 (in units of −e) as a function of the electronic density n for
values of the magnetic field h = H/Hc = 0.1, h = 0.3, h = 0.5, h = 0.7, and h = 0.9. The
on-site Coulomb interaction is U = 5 in units of t .

equations (one equation for each occupied α, γ branch) given by

0 = ∂Nα,γ (q, x, t)

∂t
+

∂Nα,γ (q, x, t)

∂x

∂ε̌α,γ (q, x, t)

∂q
− ∂Nα,γ (q, x, t)

∂q

∂ε̌α,γ (q, x, t)

∂x

− ∂Nα,γ (q, x, t)

∂q

∂V ρ(x, t)

∂x
Cρ
α,γ × (−e). (58)

Introducing equation (54) in equation (58), expanding to first order in δNα,γ (q, x, t), and
using equation (56), we obtain the following set of linearized kinetic equations:

0 = ∂ δNα,γ (q, x, t)

∂t
+ vα,γ (q)

∂ δNα,γ (q, x, t)

∂x
− ∂ δNα,γ (q, x, t)

∂q

∂V ρ(x, t)

∂x
Cρ
α,γ (−e)

− ∂N0
α,γ (q, x, t)

∂q

∑
α′,γ ′

1

2π

∫ qα′ ,γ ′

−qα′ ,γ ′
dq ′ ∂ δNα′,γ ′(q ′, x, t)

∂x
fα,γ ;α′,γ ′(q, q ′). (59)

Since 〈Aρ(x, t)〉 is a conserved quantity, the corresponding current 〈J ρ(x, t)〉 is given by

∂〈Aρ(x, t)〉
∂t

+
∂〈J ρ(x, t)〉

∂x
= 0. (60)
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In order to derive 〈J ρ(x, t)〉, let us multiply equation (59) by Cρ
α,γ × (−e), sum over α and γ ,

and integrate over q, obtaining (for V ρ(x, t) = 0)

0 = ∂〈Aρ(x, t)〉
∂t

+
∂

∂x

[
L

2π

∫
dq

∑
α,γ

(−e)Cρ
α,γ vα,γ (q) δNα,γ (q, x, t)

+
∑
j=±1

∑
α,γ

(−e)Cρ
α,γ

L

(2π)2

∫
dq ′ ∑

α′,γ ′
jfα,γ ;α′,γ ′(jq

α,γ

F , q ′) δNα,γ (q, x, t)

]
.

(61)

We than see that the conserved current can be written as

〈J ρ(x, t)〉 = −e
L

2π

∫
dq

∑
α,γ

J ρ
α,γ (q) δNα,γ (q, x, t) (62)

with J ρ
α,γ (q) given by

J ρ
α,γ (q) = Cρ

α,γ vα,γ (q) +
1

2π

∑
j=±1

∑
α′,γ ′

jCρ

α′,γ ′fα′,γ ′;α,γ (jq
α′,γ ′
F , q) (63)

which, by symmetry, equals equation (51), derived from the solution of the BA equations using
units of −e = 1. In the above discussion it was assumed that the sums over α, γ are restricted
to the pseudo-particle branches with occupied I

α,γ

j quantum numbers.
Let us now use equation (62) in a simple application and compute the zero-temperature

charge stiffness [19, 25]. This quantity is defined as [25, 38]

D = 1

2

d2(E0/L)

d2(φ/L)

∣∣∣∣
φ/L=0

= 1

2

d(J ρ

0 /L)

d(φ/L)

∣∣∣∣
φ/L=0

(64)

where E0 and J
ρ

0 stand for the ground-state energy and charge current in the presence of a
small flux φ/L, respectively. That is, the charge stiffness can be determined by perturbing the
ground-state charge current with a small flux φ/L:

〈J ρ(x, t)〉 = −e
L

2π

∫
dq J ρ

c (q) δNc(q, x, t). (65)

The smallest perturbation on the J
ρ

0 induced by φ/L corresponds the following asymmetric
occupancy of the I c

j numbers (for N even and Nσ odd):

I c
j = −N − 3

2
,−L − 3

2
, . . . ,−1

2
,

1

2
, . . . ,

L − 3

2
,
N − 1

2
,
N + 1

2
. (66)

This implies that δNc(q, x, t) corresponds to

δNc(q, x, t) = 2π

L
δ

(
qc

1 − π(N − 1)

L

)
+

2π

L
δ

(
qc

2 − π(N + 1)

L

)
(67)

leading in the thermodynamic limit (in units −e = 1) to

D = J
ρ
c (qc

F )

2π
(68)

in agreement with references [19,25]. In a similar manner we can derive the spin current, and
from it the spin stiffness.
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6. Concluding remarks

In this paper we have derived the current spectra and effective charges carried by the pseudo-
particles of the 1D Hubbard model. Alternatively to the c and s, 0 pseudo-particles, the present
results can be re-expressed in terms of holons and spinons, which can be identified with the c

and s, 0 pseudo-holes. Moreover, for γ > 0, the c, γ and s, γ pseudo-particles can be shown
to be associated with ‘bound states’ of 2γ holons and spinons, respectively.

In the case U = ∞ we have shown that the s, 0 pseudo-particle excitations do not carry
spin. This is so because in this limit the energy dispersions of the s, γ pseudo-particles are flat.
Nevertheless, the c, 0 pseudo-particle does transport spin if a finite magnetic field is applied
to the system and n < 1. In the limit U → ∞, we have shown that the spin is transported
by the spinons when a spin-singlet excitation is created. We have also shown that spinons
do not couple directly to charge probes. Again, for finite magnetic field the spin current has
a contribution from the c pseudo-particle excitations, except at half-filling. When n = 1
we are in the insulating regime and charge transport in possible by means of exciting c, γ

pseudo-particles across the Mott–Hubbard gap.
The pseudo-particles (or holons and spinons) play in the 1D Hubbard model the same role

as the quasi-particles in Fermi-liquid theory. However, while the quasi-particles are labelled
by the same quantum numbers as the electrons, only their energies being renormalized, the
pseudo-particles (or holons and spinons) refer to different quantum numbers. For instance,
while the Fermi-liquid quasi-particles have the same couplings to charge as the electrons, the
pseudo-particle charge couplings given in table 3 differ from those of the electrons.

Since in the present model the electronic degrees of freedom couple to external charge
and spin probes through the pseudo-particles (or holons and spinons), these exotic elementary
particles are the transport carriers. For instance, the charge conductivity is fully determined
by the coupling of these carriers to charge, as was shown in references [13,37]. Furthermore,
the results of reference [13] suggest that the unusual spectral properties detected in quasi-one-
dimensional materials are successfully described by the pseudo-particle (and holon) transport.
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Appendix A. Excitation dispersions and f -functions

The pseudo-particle energy bands εα,γ (q) are given by

εc(q) = −2t cos k(0)(q) + 2t
∫ Q

−Q

dk 0̃c,0;c,0(k, k(0)(q)) sin k (A.1)

εc,γ (q) = 4t Re
√

1 − u2[R0
c,γ (q) − iγ ]2 + 2t

∫ Q

−Q

dk 0̃c,0;c,γ (k, R(0)
c,γ (q)) sin k (A.2)

εs,γ (q) = 2t
∫ Q

−Q

dk 0̃c,0;s,γ (k, R(0)
s,γ (q)) sin k (A.3)

where Q = k(0)(q
α,γ

F ), qc,0
F = 2πI

c,0
F /L, and the superscript (0) on k(q) and Rα,γ indicates

that these functions are computed in the ground state.
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The functions 0α,γ ;α′,γ ′(q, q ′) are the two-pseudo-particle phase shifts [39]. (In the case
of the phase shifts and associated functions, we use the notation c, 0 = c.) The f -functions
can be expressed in terms of the phase shifts and read

1

2π
fα,γ ;α′,γ ′(q, q ′) = vα,γ (q)0α,γ ;α′,γ ′(q, q ′) + vα′,γ ′(q ′)0α′,γ ′;α,γ (q ′, q)

+
∑
j=±1

∑
α′′

∑
γ ′′

θ(Nα′′,γ ′′)vα′′,γ ′′0α′′,γ ′′;α,γ (jqFα′′,γ ′′ , q)

× 0α′′,γ ′′;α′,γ ′(jqFα′′,γ ′′ , q ′). (A.4)

Finally, the parameters ξ 1
α,γ ;α′,γ ′ of table 4 are combinations of these phase shifts given by

ξ 1
α,γ ;α′,γ ′ = δα,α′δγ,γ ′ +

∑
j=±1

j0α,γ ;α′,γ ′(q
α,γ

F ; jqα′,γ ′
F ). (A.5)
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